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DETERMINATION OF THE CHARACTERISTICS OF
NONSTEADY HEAT EXCHANGE IN ONE DISPERSE
REACTIVE SYSTEM

A. M. Grishin, G. 8. Loskutov, UDC 536.242
and T. S. Sandrykina

The laws of nonsteady heat exchange in a disperse reactive system are investigated
within the framework of a new model of heat exchange in a disperse medium not using
the concept of a coefficient of heat exchange.

The problem of energy transfer in stationary, disperse, nonreacting and reacting media has been in-
vestigated in [1-7]. An analysis of the heat-transfer mechanism is given in these reports and the basic equa-
tions are obtained. In [2], in particular, a review is made of the methods for mathematical modeling of the
heat exchange in disperse media and it is pointed out that the simplest means of mathematical modeling is the
use of the ordinary heat-conduction equations and the volume heat-transfer coefficients. A sufficiently simple
two-temperature model for the heat exchange in disperse media is obtained as a result. A more complicated
mathematical model of the transfer processes in a reacting medium, allowing for the multiphase and multi-
temperature nature of the medium, is suggested in [4]. In this model, however, they use the concept of the
heat-transfer coefficient, which is a function of time not known in advance, and additional assumptions are in-
troduced in connection with the use of so-called accomodation equations,

The problem of the nonsteady heat exchange in a disperse system is analyzed below within the framework
of the mathematical model given in [8].

Suppose there is a vessel filled with a liquid or gaseous substance whose temperature is known and equal
to Tp. A constant temperature T), is maintained at the vessel walls during the entire process. Reactive spher-
ical particles of a solid substance, equal in mass and having the same initial temperature Tin, enter the ves-
sel at some moment, We assume that the particles will be in a suspended state at equal distances from each
other and that chemical reactions whose rates are determined by the Arrhenius law [9] can be observed at the
particle—gas (liquid) interface. We presume that the depletion of the material of the particles during their
ignition is small, so that their depletion and the depletion of the gas is ignored. Moreover, we assume that
the following assumptions are valid:

1) the number concentration of particles per unit volume of disperse medium is known and equal to n;
2) the process of heat transfer as a result of molecular heat conduction is one~-dimensional;
3) the thermophysical coefficients of the particles and gas are constant;

4) the temperature inside any particle does not vary from point to point, since the radius of a particle
is small.

Tomsk State University. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 6, pp. 1019-
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From symmetry considerations it follows that an equal volume of the carrier medium, having the shape
of a cube, surrounds each particle. The size b of a cube edge can be determined from the equation

b=~
Because of symmetry the derivative of the temperature along a normal at its faces is equal to zero.

Thus, the problem of the "internal” heat exchange in the given disperse system comes down to the prob-
lem of the heat exchange between a particle and the carrier medium within the indicated cube. Owing to the
nonlinearity of the equations entering into it and the three-dimensionality of the region of its determination,
however, its solution is connected with great computational difficulties.

The solution of this problem can be simplified considerably if one employs the so-called principle of
heat-flux stability [10], analogous to the St. Venant principle which is well known in the theory of elasticity.
The principle of heat-flux stability specifies that any local disturbance of the temperature field is localized
and does not extend to remote parts of the field if the heat flux through the surface of the body remains con~
stant. An estimate of the error of the principle of heat-flux stability is given for some heat-conduction prob-
lems in [10}, where the cooling curves for a cube and an equivalent sphere were compared, in particular. A
sphere is called equivalent which is composed of the same material as the cube with the volume of the sphere
being equal to the volume of the cube and the same boundary conditions being satisfied at the surface of the
sphere as at the faces of the cube. It is asserted (10] that the error of the stability principle is small and inthe
central part of a cube the isotherms have an almost spherical shape.

When the cube is replaced by an equivalent sphere the solution of the problem of the heat exchange be-
tween the particle and the carrier medium is simplified considerably, since in this case the heat-conduction
equation becomes one-dimensional. To formulate the boundary conditions one introduces the concept of the
radius re of the cube, by which one understands the radius of the sphere equivalent to the cube.

For a cube inside which a typical particle is located the equivalent radius is

33 \1/3 3 1/3
I, = — = — .
€ ( 4n ) ( 4nn )
By virtue of the assumptions made, the solution of the problem of self-ignition of the disperse system

under consideration comes down to the solution of the equation of heat conduction in a disperse medium and
the equations of heat conduction within the equivalent spheres:

AN i-’}£=_l_i k;\,g]_‘;mzxna_ri O y<! )
{Clpt[l ('z) ]+C&pz('2) ot y* oy y dy ™" g r=-r|, Y '

JT, Ay O (,ZOI:_) =0, r,<r<np. (2)

or r Er_ or

Equation (2) is the heat-conduction equation for a typical equivalent sphere.
The boundary conditions and initial conditions for (1), (2) have the form

aT| o, Tlywi =To- Tilemig =T @ O Td,y, =T 3)
0Y ly=0
1 dT, dT, K ( E ) @
—_— —_—= — e - L]
5 Py ' ,=,,+q R
t=0, T=Ti=T,=T,. ©)

Equation (4) represents the equation of thermal energy balance in a typical particle, while the y coordi-
nate in the third condition of (3) plays the role of a parameter.

According to [8], to satisfy the third of the conditions (3) it is enough that one of the following inequalities
be satisfied:

2w Biw, % = Alpcy, (6)
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r2in Y 2w (1)

When (6) is satisfied the "internal™ heat exchange is almost complete, as a result of which the temperatures
of the gas within the equivalent sphere and of the particle differ little from each other. Conversely, when
the inequality (7) is satisfied the thermal wave is not able to reach the boundary of the equivalent sphere and
the initial temperature at its boundary remains. Intermediate regions of variation of the characteristic times
of thermal relaxation are realized most often in practice, so that a final judgement about the adequacy of the

model and its nature can be made in each concrete case on the basis of a comparison of theoretical and ex-
perimental data.

Equations (1), (2), and (4) were obtained on the basis of equations suggested in [8]. The quantity A was
calculated from the equations of [11].

For generality of the solution we rewrite the boundary problem (1)-(5) in dimensionless variables:

9 (., 0 k( 2 00, | (8)
By (a2 g , 0< ,

an (n aq) 1 . Ot + dx L:x) <
29, 1 a (., 08
ke S = = . 9)
3t o2 ox (x ax) Sr<®

The initial and boundary conditions for the system of equations (8), (9) are written in the following form:

at 1=0. 6=08=6,=0,=0, (10)
0 _
-57 n=0 =0 el'l="1 = en' ei!x=xe = 9(1], gl 61‘x:x = 6, 11
dﬁo " 3a 99, | )
—_— =" A\ i 3ex €1 __, 2)
dv 6 ox h=l*- P 1 + B6, a
where
e’ — (Ti_Tt)E — (T—‘T*)E hy (Tn—T*)E
RTS RT: ’ RT? '
(Toy—THE
L ] k - 0, l: 2v
“ RT.
1= -—y—- T = t s b, = _c& exp .
2 , te o qRypy RT, '
A= S [l —(xed 2+t (%)% .
X 1
-3
B = ﬂf)_, xezé_; a_—_c‘ﬁ; nl=_lL, 62= rgcipi ;
8, r2 CaP; Iy M,
G M= DU =) ) Ay fc,p,
v = =173 M= =, §=—=,
Ty, — (xe) (70— 1) M Mty
RT,
P= E

The problem is solved using the iteration—interpolation method [12]. Since the conditions for ignition

are the most favorable at the center of the vessel, we henceforth consider the heat exchange between any par-
ticle at the center of the vessel and the surrounding medium.

In accordance with [12], we assign the function ¢ in the form

0 == an? + b.
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The quantities a and b are determined from the conditions (11): b =6 and a =6y, — 8y, where 6y, is the tem-
perature of the disperse medium at n =0. Then

8 =8m2+08,(1—nm). 13)

The temperature 6, of the carrier medium depends on the coordinate 7 as on a parameter. We assign this
dependence in the form

6, = en’lz + 68, (1—n?), (14)

where g, is the dimensionless temperature of the carrier medium at the center of the vessel. Substituting
(13) and (14) into (8) and integrating once, we obtain

) ; n n? ) 9%, ( n n® ) ¢y
= -, (—— ——|+B— _—— A 5
on "’(k+1 k43 TP % w1 \k+1 k43 +nk as)
From the first condition of (11) it follows that ¢, = 0. Integrating (15), we obtain
; n? nt 99, n? n
0= A0 — B =1 — )
"’[2(k+1) 4(k+3)]+ ox ,,.,[2(k+1) 1k+3) ]H’ (16)

From the requirement that expression (16) for § satisfy the boundary conditions (11) and (12) we obtain, after
obvious transformations, the ordinary differential equation

[Aéw+B(90—3exp 8 ) 52]__&_5__ a7

[+80 ) 3 | 4+ Dk+3) "
We apply the method of [12] to Eq. (9). We assign the dimensionless temperature 6, in the form
8, =Ax+ By : (18)

From the fact that (18) satisfies the boundary conditions (11), we find

A= b0  p_ Be—id 9)
l—x 1—xe

Substituting (18) into (9), we obtain

a 2 wi 2 6.0—6' 6 —-éox
- 1) = Yy w w . 0
0x (x Bx) b ( 1—x, £+ l——xee ®0)
Integrating (20) with respect to x, we obtain
2.1 = (éo—éw) . (éw—éoxe) x ] ﬂ_ 21
ox _ﬁz[l—xe e 1—x, 3 +x2 ' @h

Using the condition (10), we find

_{a _ 6, 5 6, — 8, 8, — O,x .
d‘_(e" Sexp 1+l39°) 3o 6’[4(01—@ + 3(1—x5]

Integrating (21) again, we obtain

o [8—0, 2 Bu—Be%e) x_z]_ﬂ_ ,. (22)
9‘“62[ s vy ey o
where
—_ — éo—éw (ew_eox) .
dy =8, +di—5, [12(1—xg + 5(1-{)]
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Fig. 1. Time dependences of dimensionless particle temperature 6, (solid
curves 1 and 2) and temperature 9, of disperse medium (dashed curves 1 and 2)
on time at self-ignition (curves 1; D =1.7; 6; = 0.062; §, = 0.62:107% k =2; o =
0.87-107% x¢ = 3; m, = 3472) and at emergence into steady-state mode (curves 2;
D =83.2; 6; =0.062; 6, =0.62:10"% k =2; @ =0.67-107% xg =4; m = 3742).

Fig. 2. Time dependences of dimensionless heat flux q,, during self-ignition (1)
and emergence into steady-state mode (2). Values of dimensionless parameters
same as for Fig. 1.

From the fact that Eq. (22) satisfies the boundary condition ollx—x = 6y, we find the second ordinary differen-
tial equation: e

Y I I '_L_La)+z,@_+§
12 3a X 4 3 12 12 23)
; 1 ] X x2 8, —0 Xe— | 8
(3] e L e |- w o . _“e ex o .
+ 0 [ 12¢, 12 12 1 } 5, = ox P T e,

As a result, we obtain two ordinary differential equations, (17) and (23), for the determination of the
functions 6, and 8,,. The initial conditions for (17) and (23) have the form

8, (0) =0, 6,(0) = 0. (24)

From the physical statement of the problem, it follows that the system under consideration can self-
ignite at certain values of the thermokinetic parameters and certain heat-exchange conditions. It is there-
fore interesting to determine the critical conditions for self-ignition.

The critical conditions for ignition are determined by the limiting values of the system parameters at
which a steady-state solution of Egs. (17) and (23) is absent. Taking dfy,/dr = 0 and d,/dr = 0 in (17) and
(23), we obtain the steady-state equations:

o 1 4 B6, k+5
_(e—=1 exp 8, _9,—86, . (26)
axe 1 + ﬁeo 62

From (25) and (26) we find one equation for the determination of the dimensionless particle temperature
60:

1 [ mBn(x,—1)  By(x,—1)m ]= _ (xe—1) exp 0,

& | Bx 4 m(x,—1) Bx_— m(x,— 1) ax, 1+ B8, @7)

where m =4(k + 1)(k + 3)/(k + 5).
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Since the temperature maintained at the vessel surface is adopted as the temperature scale T«, we have
n =0. Then from (27) at g =0,

moxe __exp0,
8, [Bxe + m(xe— 1] 8,

=D. (28)

The quantity D has a minimum with respect to 6, at the point 9, =1, Values of D > e correspond to real values
of the steady temperature 9, of a typical particle, while at D < e Eq. (27) has no real solution. Consequently,
the parameter D can be taken as the value determining the limiting values of the system parameters at which
self-ignition is absent. At D < e the system ignites while at D = e it does not ignite.

The result is confirmed by numerical integration of (17) and (23).

In Fig. 1 we present values of the particle temperature 9, (solid curves 1 and 2) and the temperature 4y,
of the disperse medium (dashed curves 1 and 2) for values of the parameter D < e and D > e. As follows from
the figure, the temperature of a typical particle which is at the center of the vessel grows smoothly from the
time 7 =0 to r =1 while curve 1 goes upward steeply at 7 > 1. The time 7 = 74 at which the temperature ¢,
emerges onto the vertical asymptote is taken as the self-ignition time. By the time 7 =7, the temperature 6y,
of the disperse medium also emerges onfo the vertical asymptote, but the values of 6y, are less than those of
8, as this happens.

This result agrees in a qualitative respect with the data of [7].

Curves 2 in Fig. 1 are typical graphs of the temperatures 6, and 6, of the particle and the disperse
medium at D > e. Inthe given case temperatures 6, and 8y, which are close in value are established with
time, and they do not vary with time and differ little from zero. The thermal energy released by the react-
ing particles is removed from the vessel by heat conduction. In this case a steady mode of occurrence of the
process takes place and ignition does not happen.

Curves of the heat flux qw to the vessel wall for nonsteady heat exchange and for the case of nonignition
are presented in Fig. 2. As is seen, by the moment of ignition the heat flux is growing sharply and the curve
qw =qy, (1) approaches the vertical asymptote. In the case of nonignition the heat flux decreases and with time
it enters into a steady-state mode.

We note that the values of the self-ignition temperature calculated from Eqgs. (17) and (23) for magne-
sium particles in oxygen agree in order of magnitude with the experimental data of [13].

Thus, the mathematical model laid at the basis of the investigation allows one to indicate the conditions
under which the steady or nonsteady modes of heat exchange occur in a vessel containing reacting particles for
plane, cylindrical, or spherical symmetry. In contrast to [7], we do not use the concept of the coefficient of
heat exchange, which, according to [14], is a function of time which is not known in advance for reacting media.

NOTATION

t, time; y, spatial coordinate, measured from center of vessel; T, temperature of disperse medium; T,,
temperature of carrier medium; T, temperature of a typical particle; r, coordinate in the equivalent sphere,
measured from the particle surface; ¢, heat capacity; p, density; Aj, coefficient of thermal conductivity ¢the
index 1 refers to the carrier medium and 2 to the particle material); I, half the characteristic dimension of
the vessel; r,, particle radius; E, activation energy of heterogeneous reaction; K;, pre-exponent; q, t%e mal
effect; k, index of vessel symmetry; A, coefficient of thermal conductivity of disperse medium; qy, = T

)
dimensionless heat flux. n

71—7"[
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RADIATIVE—-CONDUCTIVE HEAT TRANSFER
IN TEMPERATURE-WAVE CONDITIONS

S. N. Kravchun and L. P. Filippov UDC 536.37

Relations describing the radiative—conductive heat transfer in plane temperature-wave
conditions are obtained. An analysis is given of the effect of radiative transfer on the
measurement of the thermophysical properties of the material by the method of a regu-
lar thermal mode of the third kind.

In considering heat-transfer mechanisms in liquids and compressible gases, the role of the radiative
transfer is an important and little-studied problem. It is known that heat transfer by radiation may make a
notable contribution to the heat conduction of a liquid even at room temperature, and its role increases great-
ly with increase in temperature [1]. To obtain information on radiative transfer from steady-state experi-
ments, it is necessary to make measurements in cells of different size, which is very troublesome. The po-
tential of nonsteady methods of investigation is fundamentally greater. In [2, 3], the role of radiative heat
transfer in experiments on the probing of liquids by heat pulses was investigated; it was shown that in the
early stages of this process radiant energy transfer plays a small role, and suech experiments allow the pure
heat conduction of liquids to be determined. Inthe present work, the question of radiative heat transfer is
investigated in the context of liquid probing by plane temperature waves, which is the main method of mea-
suring the thermal-activity coefficient [1].

A solution is obtained for the problem of the heat transfer in a periodically heated plane layer (repre-
sented experimentally as a metal foil) situated in a semitransparent medium. The foil constitutes an infinite
plane yz, is situated at the coordinate origin (x = 0), and has a specularly reflecting surface. The heat-trans-
fer equation of the foil in the medium, taking radiation into account, is

W _m Ty, 9T(0)
S s Ot Ox

+2¢(0). @

The radiant energy flux to an absorbing, nonscattering medium whose optical properties are independent of
temperature is given by the relation [4]

[ T'® B (v +) &
0 @)
+20n% [ [ T@) Ex(a(x—B) dt— [ T'®) B2 —x) & ],

g (x) = 2 (1 — R) on?T1 E, (ox) 4- 2Ron’a.

where E;(ox) and E,(ox) are integroexponential functions [5].
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